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Summary

• Background: RDMA-capable interconnects provide new design options for middleware

• We particularly focused on utilizing RDMA for distributed shared memory (DSM)

• Motivation: existing RDMA-based DSM cannot fully exploit the performance of RDMA

• Contributions:

• Implemented a DSM library “MENPS” (“MENPS is Not a PGAS System”)

• Runs OpenMP programs in C/C++ w/ minimal modifications

• Propose two changes to the DSM coherence protocol for exploiting RDMA:

• Floating home-based protocol to accelerate write operations

• Hybrid invalidation to accelerate read operations

• Evaluation: NAS Parallel Benchmarks [Bailey et al. ’91]

• MENPS accelerated two of five OpenMP applications using multiple nodes

• MENPS performed better than an RDMA-based DSM system Argo [Kaxiras et al. ’15]
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Introduction (1/4): Two memory models

• Shared memory

• All of the cores share the address space

• Implicit communications by the underlying

memory system

• Pros,: easy to program,

similarity to sequential programming

• Cons/: not available with many cores

• Distributed memory

• Separate address space for each node

• Usually programmed w/ MPI

• Pros,: high scalability

• Cons/: poor application productivity

Interconnect

…
MPI_Send(…);

...

…
MPI_Recv(…);

...

…
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Introduction (2/4): DSM

• Distributed Shared Memory (DSM)

• Physically distributed, logically shared

• All of the cores share the same address space (as in shared memory)

• Synchronizes caches with coherence protocols

• Pros,: high application productivity as in shared memory

• Cons/: often difficult to scale due to inter-node latency

Interconnect
Coherence
Protocol

…
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Introduction (3/4): Trends of shared-memory systems

• Hardware shared-memory systems

• Multi-core processors with increasing core counts

• Success of cache-coherent NUMA architectures (≈ hardware DSM)

AMD Opteron2 Intel Xeon Phi3

(max. 72 cores)

IBM Power AC9224

(Main component of Summit)

Fujitsu A64FX5 (Fugaku’s

CPU, 48 cores/node)

• Software shared-memory systems

• - 1990s: Many researchers have contributed to DSM

• “The lasting impact of these systems has not been high” [Ramesh et al. ’11]

• 2000s -: HPC community switched to Partitioned Global Address Space (PGAS)

• Pros,: better scaling / Cons/: limited productivity due to the lack of caches

2https://upload.wikimedia.org/wikipedia/commons/9/91/AMD_Opteron_2212_IMGP1795.jpg
3https://www.intel.co.jp/content/www/jp/ja/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
4https://www.ibm.com/products/power-systems-ac922
5https://www.fujitsu.com/global/Images/supercomputer-fugaku.pdf
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Introduction (4/4): Motivation

• We focused on the utilization of remote direct memory access (RDMA):

• Inter-node communication acceleration of interconnects

• Pros,: low latency, high BW, kernel bypass

• Cons/: specific restrictions of interfaces

• Today’s RDMA latency ≈ 1`s
• Only several times slower than inter-socket latency

• Problem: the existing RDMA-based DSM protocols are not capable for fully exploiting RDMA

1 They depend on remote diff merging or remote interrupts (“trilemma”)

2 They depend on centralized directory structures

No diff

packing

No

fine-grained

writes

No remote

interrupts

Traditional

Multiple-Writer

RDMA

WRITE-based

Multiple-Writer

Single-Writer

Floating

Home-based

6https://www.mellanox.com/products
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Contributions

• Implemented an experimental RDMA-based DSM “MENPS”

• Runs OpenMP programs in C/C++ with minimal modifications

• Based on release consistency

• Two proposed changes to the DSM protocol to exploit RDMA

1 Floating home-based protocol

2 Hybrid invalidation using write notices & logical leases

• Evaluation using NAS Parallel Benchmarks [Bailey et al. ’91]
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Background: Release Consistency (1/3)

• Release Consistency (RC)

• One of the major consistency models for DSM systems

• Pros,: enables reordering of reads/writes, relatively easy to understand

• Requirements of release consistency (a) program order
po
−−→

• Reads & writes should follow the order specified by the program

P0

P1

x := 1;

tmp0 := y;

y := 1;

tmp1 := x;

W(x)1

W(y)1

R(y)tmp0

R(x)tmp1

po

po

W(v)c = a write of the value c
to the variable v

R(v)c = a read of v resulting in c

8 / 34



Background: Release Consistency (2/3)

• Requirements of release consistency (b)

release-acquire synchronization order

• Programmers need to specify synchronizations along with reads/writes

P0

P1

W(x)1 R(y)tmp0rel acq
po po po

W(y)1 R(x)tmp1rel acq
po po po

barrier()

barrier()

synchronization order

read from
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Background: Release Consistency (3/3)

• Why do we think of release-acquire synchronizations?

• Because they can be generalized not only for barriers but also for mutexes

• A release fence corresponds to applying writes,

and an acquire fence corresponds to cache invalidation

P0

P1

lock(L);
x := 1;

unlock(L);

lock(L);
tmp1 := x;

unlock(L);

lock(L) W(x)1 rel unlock(L)

lock(L) acq R(x)1 unlock(L)

po po

po po

synchronization order

read from
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Background: False sharing in DSM systems

• Reordering is not accomplished only with relaxing consistency

• Real shared-memory systems process caches as blocks

• False sharing

• Multiple processes writing on the same cache block

• Memory systems must preserve correct semantics

P0

P1

P2

data

data

data

modify

data

modify

rel

acq

rel

acq

data
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Background: Single-Writer DSM

• Single-writer protocols

• Only a single writer process can write on the block at a time

• Impossible to implement Single-writer DSM purely with RDMA

• Due to the system calls for protecting remote memory

P0

P1

P2

write ownership

data

data

data

modify

write protect

data

modify

rel

acq

rel

acq

read

data
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Background: Multiple-writer DSM

• Multiple-writer (MW) protocols [Carter et al. ’91]

• Generate diffs by comparing twins before & after writes

• Allow multiple processes to concurrently write on the same cache block

• Mitigate the performance degradation of false sharing

P0

P1

P2

data

data

data

data

twin
clone

data

twin
clone

data

data

modify

twin

data

modify

twin

data

data

twin

diff

data

twin

diff

data

diff

diff

data

data

diff

data

merge

data

data

data

merge
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Background: Multiple-Writer + Release Consistency

• A naive example of implementing multiple-writer release-consistent DSM

• Pros,: communications for writes can be delayed until the next fence

• Cons/: diffs must be applied in all of the processes

init. x = x0, y = y0, x & y are on the same cache block bxy

P0

P1

P2

W(x)x1

W(y)y1

(x1 − x0)

merge

rel

acq

(y1 − y0)

merge

rel

acq

R(x)x1 R(y)y1
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Background: Home-based Multiple-Writer

• Home-basedMultiple-Writer DSM [Zhou et al. ’96]

• Aggregate diffs to a home node

• Pros,: only one application for each diff

• Cons/: a mismatch between the home and writer increases the latency for merging

init. x = x0, y = y0, x&y are on the same cache block bxy

P0

P1

P2

P3
(home)

W(x)x1

W(y)y1

(x1 − x0)

merge

rel

acq

(y1 − y0)

merge

rel

acq
read bxy

R(x)x1 R(y)y1
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Background: Restrictions of RDMA programming

• Only two available types of RDMA operations:

• One-sided writes/reads (RDMA READ/WRITE)

• Atomic operations (RDMA compare-and-swap, fetch-and-add)

• Various restrictions of RDMA programming:

1 Unable to notify the remote nodes (Except for RDMA WRITE with Immediate)

• Hard to delegate computation to remote CPUs

• Decentralized designs are desirable

2 Need to place data in contiguous buffers for performance

• Unable to scatter to/gather from remote buffers

3 Necessary to register the memory before transfers

• Registration may be slower than communications [Frey et al. ’09]

4 RDMA atomics are not synchronized with processor atomics
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Preliminary Evaluation: RDMA-based DSM

• Three methods for merging diffs to a home node

• PackDiff: Two-sided messaging for transfering packed diffs

• DiscontiguousWrite: One-sided discontiguous RDMA WRITEs

• ContiguousWrite: A single RDMA WRITE of the whole block (≠ diff merge)

• Assuming a 32 KiB cache block

• Microbenchmarking result of latency

• ContiguousWrite < PackDiff < DiscontiguousWrite (lower is better)

Latency w/ 50% changes

PackDiff 309µs

DiscontiguousWrite 5042µs

ContiguousWrite 4.5µs

• The overall latency is dominated by software overhead rather than communications
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Problems of the existing RDMA-based DSM protocols

No diff

packing

No

fine-grained

writes

No remote

interrupts

Traditional

Multiple-Writer

RDMA

WRITE-based

Multiple-Writer

Single-Writer

Floating

Home-based

1 Traditional home-based MW (e.g., HLRC [Zhou et al. ’96])

• Software overhead due to packing/unpacking diffs

• Does not concide with the zero-copy nature

2 RDMA WRITE-based MW (e.g., Argo [Kaxiras et al. ’15])

• Software overhead coming from many small RDMA

WRITEs

• RDMA does not transfer fine-grained messages

efficiently

3 Single-Writer (e.g., MAGI [Hong et al. ’19])

• Messaging is needed to protecting writes at remote

cores

• Messaging inherently increases remote CPU overhead
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Proposal: Floating home-based DSM (1/2)

• Floating Home-based DSM

• Complete merging by home migration

• Multiple-writer, but serializes merging in release fences

• Transfer master versions of cache blocks, not diffs

init. x = x0, y = y0, x&y are on the same cache block bxy

P0

P1

P2

P3
homehomehome

W(x)x1

W(y)y1

merge rel

acq

merge

rel

acq

read bxy

R(x)x1 R(y)y1
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Proposal: Floating home-based DSM (2/2)

No diff

packing

No

fine-grained

writes

No remote

interrupts

Traditional

Multiple-Writer

RDMA

WRITE-based

Multiple-Writer

Single-Writer

Floating

Home-based

Why does our protocol solve the trilemma?

1 No diff packing

• Only coarse-grained master versions are transferred

2 No fine-grained RDMA WRITEs

• Home migrations can be implemented w/

coarse-grained RDMA READ & ATOMICs

3 No messaging

• Multiple-writer protocols do not require remote

interrupts for write protection
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Proposal: Hybrid invalidation (1/4)

• Cache invalidation is orthogonal to processing writes

• Mainly determines the read performance

• Calculates which cache blocks must be invalidated at acquire fences

• Our basic idea: write notices (WNs) [Keleher et al. ’94]

• Synchronized operations piggybacks a set of the written block IDs

• This set is gradually broadcast via synchronized operations

init. x = x0, x is on a cache block bx

P0

P1

R(x)x0 rel

acq

W(x)x1
rel

WNs={bx}

acq
inv(bx)

R(x)x1
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Proposal: Hybrid invalidation (2/4)

• Write notices enable us to implement our “fast read”method

• Each write notice carries the process ID of the last releaser

• In the best case, a read completes w/ a single RDMA READ from the last releaser in the

synchronization order

• , No need to search for the current home node

init. x = x0, y = y0, x & y are on the same cache block bxy

P0

P1

P2

home

W(x)x1

W(y)y1

merge
rel

WNs={(bxy, P0, 0) }

acq inv(bxy)

migrate

rel

WNs={(bxy, P1, 1) }

acq

RDMA READ bxy

R(x)x1 R(y)y1
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Proposal: Hybrid invalidation (3/4)

• ,Write notices enable to accelerate reads (“fast read”)

• / Hard to discard write notices

• Need to confirm that all of the processes processed the write notice

• Traditional DSM systems implemented global garbage collection mechanisms

(e.g., TreadMarks [Keleher et al. ’94])

• One of the reasons complicating the design

• RDMA is not capable of broadcasting

Decentralize the removal of write notices by Logical leases [Yu et al. ’15]
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Proposal: Hybrid invalidation (4/4)

• Logical leases [Yu et al. ’15]

• Invalidate caches (or WNs) based on logical timestamps

• Readers increases the read timestamp (= when a cache becomes stale) at the home node

• Writers increases the write timestamp to invalidate old replicas

• Both write notices and cache blocks can be discarded based on timestamps

init. x = x0, x is on the cache block bx (home = P2),

rts(bx ,P) = wts(bx ,P) = rel_tsP = acq_tsP = 0 for all P

P0

P1

P2
home

R(x)x0
rts(bx ,P0) := 10

rts(bx ,P2) := 10

rel

rel_tsP0 = 0

acq
acq_tsP1 := 0

W(x)x1

migrate

wts(bx ,P1) := 11
rts(bx ,P1) := 11

rel

rel_tsP1 = 11

acq
acq_tsP0 := 11

inv(x)

rts(bx ,P0) < acq_tsP0

R(x)x1

rts(bx ,P1) := 21

rts(bx ,P0) := 21
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Implementation

• MENPS includes a simple layer for running OpenMP programs

• Implements the OpenMP ABI functions emitted by the compiler

• No code transformation or special compiler required

because call stacks are shared (i.e., everything-shared DSM [Costa et al. ’06])

• Minimal modifications to the application are needed

(e.g., annotations to global variables, avoid using threadprivate)

• Running multiple threads in each process (hybrid parallelization)

• In detail, both the system and application use user-level threads

P0 barrier() barrier()

P1 barrier() barrier()

P2 barrier() barrier()

Enter parallel Exit parallelDSM barrier DSM barrier
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Evaluation

• We employed NAS Parallel Benchmarks [Bailey et al. ’91] for the evaluation

• Unofficial version ported to C & OpenMP

• NAS EP, CG, FT, IS, and BT are experimented

• NAS LU, SP, and MG are excluded due to the implementation issues

• Compared systems against MENPS

• Intel OpenMP runtime

• Argo DSM [Kaxiras et al. ’15]: an RDMA-based DSM system

• w/ our wrapper library because Argo does not directly support OpenMP

• MPI: the original MPI implementation (differing from the OpenMP version)

Evaluation environment (Reedbush-H)

CPU Intel Xeon E5-2695 v4

2.1 GHz (max. 3.3 GHz with Turbo boost)

18 cores × 2 sockets / node

Memory 256GB / node

Interconnect InfiniBand FDR 4x, 2 links

OS Red Hat Enterprise Linux 7.2

Compiler Intel C++ Compiler version 18.1.163

MPI Intel MPI Library version 2018.1.163

Reedbush7

(ITC at the Univ. of Tokyo)

7https://www.cc.u-tokyo.ac.jp/supercomputer/reedbush/service/
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Evaluation: NAS EP (embarassingly parallel)

0 200 400 600 800 1000

Total number of worker threads

0

200

400

600

800

S
p
e
e
d
u
p

sequential

MENPS (MPI+UCT)

MPI

ICC OpenMP

NAS EP (CLASS=D)

• CLASS means the problem size of the benchmarks

• The scalability results of CLASS=D

• MENPS scaled with multiple nodes

• No communications in the main computatin

• The performance is slightly worse than MPI in 32 nodes

• Initialization and finalization incur memory accesses to the

shared area

0 100 200 300 400

Total number of worker threads

0

50

100

150

200

S
p
e
e
d
u
p sequential

Argo

MENPS (MPI-only)

ICC OpenMP

NAS EP (CLASS=C)

• The scalability results of CLASS=C (smaller than CLASS=D)

• Comparing the performance with Argo DSM [Kaxiras et al. ’15]

• We could not reproduce the good scalability of Argo in NAS EP

• MENPS scales until 238 cores (= 7 nodes)

• The speedup saturates due to the reduction phase
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Evaluation: NAS CG (conjugate gradient)

0 100 200 300 400 500

Total number of worker threads

0

50
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MENPS (MPI+UCT)

MENPS (MPI-only)

MPI

ICC OpenMP

NAS CG (CLASS=D)

• The scalability results of CLASS=D

• MENPS performs better than ICC OpenMP

• The maximum speedup was 63 times using 128 cores

• MPI’s result exhibits a different trend

• It uses a different algorithm from the shared-memory version

[Kwon et al. ’12]

0 25 50 75 100 125 150

Total number of worker threads

0

5

10

15

20

25

S
p
e
e
d
u
p sequential

MENPS (MPI+UCT)

ICC OpenMP

Argo

NAS CG (CLASS=C)

• The scalability results of CLASS=C (smaller than CLASS=D)

• Comparison with Argo again

• We could not reproduce the good results

• Possible reasons of the reproduction failure

1 Problems of our modified benchmarks

2 Heavy use of Pthreads calls [Gracia ’17]

3 Other design-level issues (e.g., its coherence protocol)
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Evaluation: NAS FT, IS, BT

• MENPS could not accelerate other three benchmarks

• Single-node ICC OpenMP performs better than multi-node MENPS

• DSM inserts additional overhead in each fence and each read/write fault

• One possible reason: too small problem sizes for multi-node experiments

Relative performance comparisons between MENPS and ICC OpenMP.

Only the best settings are listed.

MENPS ICC OpenMP

Speedup # of threads Speedup # of threads

FT 6.80 16 17.55 36

IS 2.94 16 3.74 8

BT 0.996 16 8.63 36
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Evaluation: Proposed prototol vs. baseline

EP
(CLASS=C)

CG
(CLASS=C)

FT
(CLASS=C)

IS
(CLASS=C)

BT
(CLASS=A)
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Floating+Timestamp+FastRelease

Floating+Timestamp

Floating+Directory

Fixed+Timestamp

Relative performance improvement of

different methods with 64 cores (two nodes)

normalized to the results of Fixed+Directory.

• Comparing the proposed methods w/ the baseline ones

• Fixed home-based (vs. Floating home-based)

• Merging diffs to the fixed home node

• Blocks are transferred in a coarse-grained manner

(differing from DiscontiguousWrite)

• Directory-based (vs. Timestamp-based)

• Home nodes hold directories instead of timestamps

• Floating+Timestampmostly performs the best

• Timestamp-based method was important for CG

• Floating home-based method was important for BT
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Related Work: DSM

• Software DSM systems

• The first software DSM system: Ivy [Li et al. ’88]

• Numerous examples of DSM systems in the 1990s:

e.g., TreadMarks [Keleher et al. ’94], JIAJIA [Hu et al. ’98]

• Similar idea to our floating home-based method:

Moving Home-Based Lazy Release Consistency [Chung et al. ’99]

• Proactively migrates home nodes to accelerate writes

• RDMA-based DSM systems

• PackDiff + RDMA: e.g., [Iosevich et al. ’05]

• DiscontiguousWrite: e.g., Argo [Kaxiras et al. ’15]

• Single-writer + RDMA: e.g., MAGI [Hong et al. ’19]

• Home migration + RDMA: MENPS

No diff

packing

No

fine-grained

writes

No remote

interrupts

Traditional

Multiple-Writer

RDMA

WRITE-based

Multiple-Writer

Single-Writer

Floating

Home-based
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Related Work: PGAS

• Partitioned Global Address Space (PGAS)

• Global address space + local address space(s)

• Global address space is accessible by all of the nodes

• Local address spaces are not shared

Global

Local objects

global array

Process 0 Process 1

xa

Process (N-1)

global array

get()

y

put()

address
space

Local
address
space

• Pros,: good scaling results, better productivity than MPI

• Cons/: requires changes to the shared-memory applications (no coherent caches)

• Many systems being actively developed (e.g., UPC [El-Ghazawi et al. ’02], Global Arrays [Nieplocha et al. ’06],

X10 [Charles et al. ’05], Chapel [Chamberlain et al. ’07], Co-array Fortran [Numrich et al. ’98], XcalableMP [Lee et al. ’10],

UPC++ [Zheng et al. ’14], HPX [Kaiser et al. ’14], DASH [Schuchart et al. ’18], OpenSHMEM [Chapman et al. ’10])
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Conclusions

• Developed a DSM library MENPS that exploits the performance of RDMA

• Runs OpenMP programs in C/C++ w/ minimal modifications

• Proposed two protocol-level changes for MENPS:

• Floating home-based protocol solves the trilemma of diff merging

• Hybrid invalidation enables decentralized coherence

• Evaluated MENPS using NAS Parallel Benchmarks:

• MENPS accelerated the OpenMP version of NAS EP & CG

• MENPS performed better than an RDMA-based DSM system Argo
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